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TaggedPAbstract

The paper presents a prosody model of native English (L1) continuous speech as corrective prosodic feedback for non-native

learners. The model incorporates both hierarchical discourse association and information structure to (1) pinpoint the prosodic

features of multi-phrase continuous speech, and (2) simulate native-like expressive speech using corpus of North American and

Taiwan L2 English. The bottom-up, additive, data-driven model aims to generate L1-like expressive continuous speech with

built-in phonetic and phonological specifications at the lexical level, syntactic/semantic specifications at the next higher phrase

and sentence levels, and completed with patterned paragraph associations and prosodic projections of information allocation at

higher levels. The hierarchical model successfully allows us to identify L1-L2 differences by prosodic modules/patterns as novel

additional features “discourse structure” and “information density” reliably nail down L1-L2 prosodic differences related to

phrase association as well as information placement. Our L1 prosodic model with the proposed predictors and optimized model

trained from L1 speech corpus showed increase of prediction over existing methods. As a corrective feedback for L2 learners,

these predicted L1 prosodic features were compared with a baseline model by objective evaluation (RMS error and correlation)

then superimposed onto the L2 speech tokens. Resynthesized L2 tokens were subsequently compared with the original L2 tokens

for degrees of perceived accent using subjective evaluation (native-listener perception test). We believe the proposed model can

be an effective alternative for implementing computer-assisted language learning (CALL) systems that helps generate L1-like

prosody from text, and at the same time serves as corrective feedback for L2 learners.
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1. Introduction

TaggedPThe goal of the present study is develop a prosody model that integrates discourse association and information

structure to simulate continuous L1 English speech prosody towards more comprehensible L2 communication. The

model is intended as CALL baseline for advanced L2 learners who need to produce more intelligible and expressive

continuous speech by improving overall global prosody. Our motivation stems from that fact that though quite a

number of individual prosodic features have been identified to contribute to L2 accent, intelligibility and compre-

hensibility, little is known as to how these features are interactively related to more expressive speech, and where L2

speakers’ learning attention could be directed. However, we noted that most of existing CALL systems tended to use

prosodic features derived from data of read isolated sentences instead of more realistic continuous speech, and inad-

vertently by design left issues specific to continuous speech prosody unaddressed. Our group has long been investi-

gating speech prosody with data of continuous speech, and adopted a top-down hierarchical perspective from the

start. We consider this departure of perspective from the mainstream is particularly significant when dealing with flu-

ent continuous speech consisting large size multi-phrase speech unit whose output generation involves both linear

and hierarchical derivation, and by default would bring to light prosodic issues of global nature. The following pre-

sentation reports our current attempt to CALL application that was encouragingly supported by recent works

(Dom�ınguez et al., 2014, 2016) that not only accounted for the close relationship between discourse prosody and

information structure, but also predicted discourse prosody in continuous speech. We believe works devoted to ana-

lyzing and simulating more realistic sentences of continuous speech, whether well planned or spontaneous, merit

more research attention.

TaggedPIn the physical sense, prosody is generally referred to the melodic and rhythmic aspects of speech that involves

modulations of fundamental frequency, duration, and amplitude in the speech signal (Munro, 1995; Scruton, 1996;

Derwing et al., 1997; Anderson-Hsieh et al., 1992; Benrabah, 1997; Coniam, 1999; Witt et al., 2000; Trofimovic

et al., 2006; Moustroufas et al., 2007). By examining the acoustic aspects of speech output at face value it is no

surprise that some reported studies concluded that the range of prosodic variation is non-systematic and unpredict-

able (James et al., 1976; Pepp�e et al., 2000; Jacewicz et al., 2010). However, we believe this is largely due to

examining output acoustic data at face value instead of understanding its composition that involves both linear

association as well as hierarchical governing. Note that three parallel layers contribute to prosody formation,

namely, linguistic, para-linguistic, and nonlinguistic. The linguistic layer encodes phonetic representation, lexical

(semantic), syntactic (phrase and sentence), discourse information and some pragmatic information that can be pre-

dicted from content. The paralinguistic layer conveys speaker’s attitudes, emotions, dialect, sociolect, idiolect, etc.

The non-linguistic layer delivers the speaker’s gender, age and physical state. In other words, the majority of out-

put prosodic variations from linguistic contributions should be largely predictable, and therefore could be modeled.

For instance, the procedures of how the syllables are combined to form prosodic words and how prosodic words

form prosodic phrases and sentences are already well known (Selkirk, 1984; Nespor and Vogel, 1986). Further-

more, various prosodic hierarchy supported by other L1 studies also verified how acoustic correlates at each pro-

sodic level contribute collectively to surface prosody, as well as identifying a range of communicative functions

such as marking stress, focus, and boundaries etc. (Bailly et al., 2005; Fujisaki et al., 2005; Xu, 2005; Mixdorff,

2002a). The fact is acoustic models that successfully separate contributions from words and sentences (Laver,

1991; Fujisaki, 2004) are available; these models could easily be extended to accommodate additional higher level

contributions from larger size speech units. For instance, instead of examining single spoken phrases or simple

sentences at one time, Tseng et al. (2005, 2008), as an alternative, extended a perceived prosodic hierarchy to

include discourse-level multi-phrase association patterns in order to account for the formation and generation of

cross-phrase global prosody of continuous speech from multiple levels of contributions. Through corpus studies of

Mandarin L1 speech data, the perception based discourse hierarchy, supra-segmental acoustic correlates F0, dura-

tion, intensity and pause duration were analyzed with a regression procedure that teased apart each prosodic corre-

late from surface prosody into particular discourse levels as well as their cumulative contribution to output

prosody. It turned out that the hierarchical alternative not only accounted for contributions from the syllable, pro-

sodic word, and prosodic phrase, but also successfully took into account physiological constraint change of

breath when speaking continuously and multi-phrase units, thereby substantiating contributions above words

and sentences in order to form coherent multi-phrase speech paragraphs. Thus a working model capable of

predicting the interaction and modulation among involved discourse layers and ultimate prosody output prosody
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TaggedPof multiple-phrase units is already in existence to account for how underlying prosodic patterns systematically cor-

respond to various discourse levels and derivationally contribute to output prosody.

TaggedPIn comparison to the relatively little corpus linguistic investigation of output prosody that accounts for phrase/dis-

course association, even less attention has been paid to prosodic modulation conditioned by arrangement of informa-

tion structure beyond the sentence level. While information structure (IS) coded in words (lexical) as well as larger

structure (sentence) generally refers to the organization that reflects the important content of utterances (Halliday,

1967; Chafe 1974; Lambrecht, 1994), utterance in these studies remained at the sentence level and corpus based

results scarce. Among the two best accepted definitions of IS from L1 studies, the more generally assumed one is the

given/new dichotomy of information status (Prince, 1981) while the less assumed other is focus structure (K€onig,
2002). We note here that as working definition for corpus analysis, the sentence-based definition of given/new status

soon became inadequate when used to analyze data of continuous speech, for example, narratives because the same

nouns and noun phrases would appear over and over. Graphic display of acoustic data of continuous speech also

showed how the intonation contours of individual phrases varied highly on the one hand, and almost always con-

tained more than one peak on the other. Instead, reported works showed how prosodic features in English, Bulgarian,

Italian and Dutch are attributed to focus types (Hoskins, 1997; Sityaev and House, 2003; Avesani and Vayra, 2003;

Hanssen et al., 2008; Andreeva et al., 2016), hence focus specified status appeared to be a more possible and plausi-

ble working definition to analyze information structure of continuous speech data. We therefore tested perception of

focus types as a separate level of manual annotation for data preprocessing, and were able to retain consistent tag-

ging across transcribers. Consequently, we adopted focus type as our working definition of Information Structure.

TaggedPWe noted that similar to L1 studies, the majority of L2 studies have also been limited to single specification by

isolated single tokens at a time, at individual levels and without mention of cross-level and cross sentence interac-

tions. For example, at the phonetic level, studies of L2 English consonants and vowels produced by Javanese and

Swedish speakers showed how their temporal patterns differ from L1 English due to influences from their respective

mother tongue (Thor�en, 2007; Perwitasari et al., 2015). At the lexical level, when L2 English of Japanese and Man-

darin speakers was compared with L1 English, it was found the L2 speakers produced weaker acoustic contrasts

between stressed and unstressed syllables (Nakamura 2010; Tseng et al., 2013). But there has been little to no report

on the phonetic-lexical interaction in perceived L2 accent, let alone discourse features that must be taken into

account to produce continuous speech of multiple phrase units.

TaggedPSimilar to reported works on L1 prosodic features, information structure related L2 prosodic features has also

received less attention, and attention has also been paid to sentence and discourse prosody separately. At the sen-

tence level, most reported results showed that expressing information structure via prosody turned out to be more

challenging than expected for L2 speakers. For example, given/new information related pitch accent placement of

L2 English speech by German, Spanish, Japanese, Malay and Thai speakers showed that L2 speakers would often

emphasize given information instead (Wennerstrom, 1994; Grosser, 1997; Ramirez Verdugo, 2002; Gut, 2009,

2013). Focus structure related pitch accent placement, i.e., broad vs. narrow focus, by L1 Taiwan Mandarin and Bei-

jing Putonghua speakers showed insufficient differentiation of on-focus/post-focus contrasts (Visceglia et al., 2012).

Vietnamese and Hong Kong L2 English exhibited similar weakened realization of pitch accent contrast (Nguyễn
et al., 2008) and post-focus compression (Gananathan et al., 2015). L2 focus realization distinct from L1 was also

found in Atterer and Ladd (2004) and O’Brien and Gut (2010) at the sentence level. At the discourse level, patterns

of chunking and phrase association that may attribute to L2 comprehensibility/accent have also been studied, though

not as extensively as sentence level issues. Both L1 Taiwan Mandarin (Tseng et al., 2010) and Bengali (Saha and

Mandal, 2017) speakers exhibited similar chunking features: (1) Inconsistency of realizing discourse-level chunking,

continuation or termination among speech paragraphs and among speakers. (2) More units of intermediate chunking

than L1 English speakers. In short, these studies collectively demonstrated that though some distinct features related

to individual prosodic units and/or levels have been widely studied, the interaction among them was hardly

addressed, especially with respect to discourse/paragraph association and information structure. The lack of under-

standing of how individual features interact is also evidenced by a recent comprehensive review of CALL systems

applying TTS (Text To Speech) that concluded by recommending existing CALL systems to pay more attention to

the development of natural prosody and expressiveness (Handley, 2009).

TaggedPMotivated by the common lack of interactive studies to help determine the prosodic constitution of multi-phrase

speech units with appropriate information placement, especially Computer-Aided Language Learning (CALL) sys-

tems for more advanced L2 learners, we set our goal to construct a prosody training system for CALL applications
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TaggedPthat would incorporate interaction of involved factors and trained with data of continuous speech. We hope the lin-

guistic information-based model of English prosody could bring more implications for advanced computer-assisted

language learning. In the following sections, we will present our proposed model based on models summarized in

Bailly et al. (2005), Fujisaki et al. (2005), Xu (2005), and Tseng et al. (2005) using refined methods from earlier

research (Zellner et al., 2001; Tseng et al., 2005, 2008). We will use a hierarchically inclusive perspective integrating

linguistic-layer categories from both discourse and information structure to analyze L2 prosody. Specifically, pro-

sodic modules/patterns were extracted from surface prosody at particular linguistic levels in order to provide a finer-

grained, hierarchical analysis of the individual and collective contributions made by each prosodic level, as well as

to investigate the possibility of interaction among those levels. Based on data-driven approaches, a bottom-up, addi-

tive model of L1 prosody was built, starting with phonetic and phonological specifications at the lexical level; then

superimposing higher-level syntactic/semantic specifications at the phrase and sentence levels. After which patterned

prosodic projections of paragraph associations and information structure were added to produce fluent continuous

speech. The same model was also used to compare L1 and L2 Taiwan English prosody from a hierarchical perspec-

tive, which allowed us to identify differences in production of prosodic modules/patterns at each level of linguistic

specification, as well as the interactions among these levels. We also developed a L1 prosodic model to provide cor-

rective norm for L2 learners by simulating L1 prosodic features using the proposed predictors and optimized model

trained from L1 speech corpus. Simulated L1 prosodic features were compared with a baseline model by objective

evaluation (RMS error and correlation). The simulated L1 prosodic features were further superimposed onto L2

speech tokens, resynthesized and compared with original L2 tokens in terms of perceived accented using subjective

evaluation (native-listener perception test). We will show that the increased prediction accuracy and reduced L2

accent makes the model a good candidate for CALL implementation, in particular how it could be used as corrective

feedback toward prosody training.

2. Corpus and annotation

2.1. Corpus design

TaggedPSpoken-language tasks were excerpted from the AESOP_ILAS database, whose materials were designed to elicit

a range of supra-segmental features, based on previous research investigating the prosodic contribution to perception

of accent in L2 speech (Visceglia et al., 2009). These tasks included 20 frequency-controlled and stress-

balanced (2�4 syllable) target words (Appendix A) in the following prosodic contexts: (1) in 20 carrier sentences

(Appendix B) (2) at prosodic boundaries (Appendix C) (3) in the position of contrastive stress (Appendix D). The

design attempts to elicit prosodic patterns of (1) canonical lexical stress in the target words as well as following

superimposing/higher-level prosodic alteration of (2) prosodic boundaries from the syllable, word, phrase to sen-

tence level and (3) focus status at sentence level in the context where 20 target words are embedded. Speakers were

also required to produce the passage ‘The North Wind and the Sun’, which allowed measurement discourse-level

prosodic features/linguistic specifications in longer units of speech. Recorded speech from 11 L1 speakers of North

American English (5M/6F) and 30 speakers of Taiwan L2 English (15M/15F) were used. The Taiwan L2 speakers

were asked to self-rate their English proficiency by 4 levels, namely, poor, average, good and excellent. The distribu-

tion of reported proficiency level is listed in Table 1. Total of 660 spoken sentences/11 speech paragraphs of L1

English and 1800 spoken sentences/30 speech paragraphs in Taiwan L2 English were selected.

2.2. Annotation for linguistic specifications

TaggedPFive types of linguistic specifications related to prosody were annotated for the purpose of analysis and modelling,

namely, segmental information, lexical stress pattern, syntactic structure, information structure (focus type) and
Table 1

Distribution of proficiency level by self-evaluation of Taiwan L2 speakers.

Proficiency level Poor Average Good Excellent

Percentage 20.00 50.00 26.67 3.33



Fig. 1. A hierarchical diagram of perceived discourse structure.
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TaggedPdiscourse structure. Segmental identities were automatically tagged on an audio timeline using the HTK Toolkit fol-

lowed by manual spot-checking by trained transcribers; perceived boundaries were manually tagged while tran-

scriber consistency over 80%. Three levels of word/lexical stress primary (P), secondary (S) and tertiary (T) were

automatically tagged in syllable units using the CMU electronic dictionary. Syntactic structure was annotated at syl-

lable, word and phrase boundaries by a native American English linguist. Phrase boundaries were further categorized

into non-phrase boundary (NB), continuation rise (CR), final rise (FR) and final fall (FF). Information structure

by narrow focus (NF), broad focus (BF), non-focus (NonF) and function word (FW) was annotated by the same

native American English linguist. Examples of the above annotation on AESOP_ILAS are provided in Appendix B,

C and D.

TaggedPHierarchical discourse structure was perceptually annotated on an audio timeline without consideration of textual

marks such as punctuation. The hierarchical discourse structure was annotated into five levels of prosodic units: the

syllable (SYL), the prosodic word (PW), the prosodic phrase (PPh), the breath group (BG, a physio-linguistic unit

corresponding to change of breath while speaking continuously) and the multi-phrase speech paragraph (PG). These

units were manually tagged as 5 levels of perceived discourse boundary B1 through B5 (Tseng et al., 2005). The

unit/boundary correlations can be expressed as SYL/B1, PW/B2, PPh/B3, BG/B4 and PG/B5 as shown in Fig. 1. A

between-transcriber consistency rate for discourse boundaries in the training corpus of 80% or above was required

for the transcriber to annotate the present corpus.

TaggedPThe following presents an example of a complete perceived PG with text in ‘The North Wind and the Sun’ pro-

duced by a male native English speaker.

TaggedPjB5Then the sun shone out warmlyjB4, and immediately the traveler took off his cloakjB4. And so the north

windjB3 was obliged to confess that the sun was the stronger of the twojB5.
TaggedPIn the example, although ‘warmly’, ‘his cloak’ are respectively completions of phrase and sentence in the text,

the respective following prosodic boundaries are perceived as clear continuations with a breath change (B4) while

the containing speech paragraph lasts until ‘of the two’ (B5). These perceived boundaries are not simply silence, but

audio cues to listeners of how phrases are associated to form semantic coherence/cohesion. In turn, each and every

phrase within the phrase group is not the same when they are produced individually and in isolation. An annotation

example combining all levels of annotations by discourse structure and information structure is illustrated in Fig. 2.

3. Feature extraction

TaggedPThree acoustic features of surface prosody are broken down into particular linguistic specifications for prosodic

analysis and prediction. The acoustic features include magnitude of accent/phrase command (Aa/Ap) for pitch analy-

sis and phoneme duration (PD) for tempo analysis. After Aas/Aps are extracted, Aas and Aps are respectively

aligned into perceived SYL and PPh units (Annotation) to analyze and predict the Ap and Ap modules in relation to

each level of linguistic specifications which were also aligned respectively into SYL and PPh units. Extraction of

acoustic features and definition of linguistic specifications are presented in the present section. More details for divi-

sion of prosodic modules into linguistic levels of specification are given in Section 4.1. L1 prosody was then



Fig. 2. An annotation example encoding both discourse structure and information structure in “the north win and the sun”.
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TaggedPreconstructed by optimizing interaction among each level of prosodic modules using regression models, which will

be discussed in Section 4.2

3.1. Acoustic/prosodic variables
TaggedP3.1.1. Accent and phrase commands Aa/Ap (F0)

TaggedPAccent/phrase commands Aa/Ap were extracted using the command-response model (Hirose et al., 1984) which

decomposes the surface f0 contour into three components: the speaker’s base register (base frequency, Fb), long-

term/global tendency (phrase component, AP*GP(t)) and short-term/local humps (accent component, Aa*Ga(t)). The

three components and corresponding commands and parameters can be seen in the sequence (1)�(3) below. Analy-

sis and modeling in the present study focused on the two parameters that dominate F0 high\low contrast, namely the

accent magnitude (Aa) and phrase command (Ap). Our method for automatic extraction of Ap and Aa is presented

in the following section.

F ¼ ln Fbð Þ þ
XI

i¼1

ApiGpðt � T0iÞ þ
XJ
j¼1

Aaj½Ga t � T1j
� �� Ga t � T2j

� �� ð1Þ

Gp tð Þ ¼ a2t exp �atð Þ; for t� 0 ð2Þ

Ga tð Þ ¼ min 1� 1þ btð Þ exp �btð Þ; g½ �;
for t� 0 ; where a ¼ 3; b ¼ 20

ð3Þ

TaggedP3.1.1.2. Auto-extraction of Aa/Ap. TaggedPThe most commonly used auto-extraction of parameters in Eqs. (1)�(3) for tone

languages are based on low-pass filtering (Mixdorff, 2000); this method is better suited for tone languages because it

derives both positive and negative Aas. In order to extract only positive Aas for a non-tone language, such as

English, we developed a simpler extraction method that still uses local minima of low-pass contours (Mixdorff,

2000) for intonation contour segmentation. After intonation boundaries were segmented, optimized Ap values were

determined using grid search which aims to find minimal distance between phrase component in Eq. (2) and original

F0 contour at some significant F0 points including first local peak and the following several local minimum of origi-

nal F0 within the current intonation segment. These significant F0 points, in which local minima are prevalent, result

in an optimized contour of phrase contour passing through most of local minima of original F0 contour. The opti-

mized phrase contour in low values means residual components obtained from original F0 subtracting the optimized

phrase contour would be positive. The positive residual components which function as approximation targets of Aa

function in (3) produced positive Aa values. A demonstration of auto-extraction for Ap is shown in Fig. 3.



Fig. 3. An example of auto-extracted phrase component (lower) from entire F0 contour of ‘The North Wind and the Sun’ (upper). Most of

extracted Aps correspond to PPh units described in Section 2.2.
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TaggedPAfter Aas/Aps extracted, Aas and Aps are respectively aligned into perceived SYL and PPh units (Section 2.2) to

analyze and predict the Ap and Ap modules in relation to each level of linguistic specifications which were also

respectively aligned into SYL and PPh units (will be shown in Section 3.2).
TaggedP3.1.2. Phoneme duration (PD)

TaggedPPD was directly extracted at phoneme boundaries which are force-aligned by the HTK Toolkit followed by man-

ual spot-checking (Section 2.2). Extracted Aa, Ap and PD were then aligned with the linguistic specifications out-

lined in the following section for further analysis and modeling.
3.2. Linguistic variables

TaggedPThe linguistic specifications “phonological” (stress), “information planning” (focus structure), “syntactic” (sen-

tence modality) and “phrasing” (segmentation) were extracted by annotation (see Section 2.2 for details) and distrib-

uted across Ap, Aa and PD for analysis and modeling. Contextual specifications were extended based on the

differences in scale and other properties of Ap, Aa and PD outlined in the sections below.
TaggedP3.2.1. Linguistic variables for modeling Aa

TaggedPBased on previous studies suggesting prosody is a layering outcome of multiple linguistic levels based on Bailly

et al. (2005), Fujisaki et al. (2005), Xu (2005), Mixdorff (2002a), and Tseng et al. (2005, 2008), Table 2 lists possible

linguistic predictors for modeling Aa at different levels. Among the predictors, type of lexical stress (X1), focus

degree (X5) and boundary type (X10) are basic variables at the lexicon, sentence and discourse level.



Table 2

Summary of linguistic variables for Aa modeling.

Affecting level Feature Code

Lexicon level Lexical stress type of current syllable X1

Pre-syllable contrast within a word X2

Post-syllable contrast within a word X3

Relative syllable position by primary stress in a word X4

Sentence level Focus degree of current word X5

Pre-word contrast within a sentence X6

Post-word contrast within a sentence X7

Relative position to NF in a sentence X8

Relative position to first BF in a sentence X9

Discourse level Boundary type (level) of current phrase X10

Boundary type (level) of pre phrase X11

Boundary type (level) of post phrase X12

Information structure Infodensity by syllable X13

Infodensity by word X14
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TaggedPStarting from the lexicon level, an initial Aa modules are directly derived from annotations of lexical stress (X1).

For instance, all Aa values corresponding to primary stress in target words (Appendices A and Appendices B) are

grouped and averaged to represent initial Aa models of primary stress. However, such extraction is inappropriate for

higher-level linguistic specifications. For instance, Aa values derived for focus degree at sentence level (X5) using

the same extraction intrinsically comprise lower-level effects such as lexicon stress (X1) and higher-level effects

such as focus degree (X5). To clearly separate individual level contributions of X1 and X5 before modeling, an addi-

tional separation refined from (Zellner et al., 2001; Tseng et al., 2005; Tseng et al., 2008) is proposed and explained

in detail in section Section 4.1.

TaggedPAfter the Aa modules are separated into each disjointed prosodic level/linguistic specification (Section 4), the

contextual features extended from X1, X5 and X10 (X2-X4, X6-X9, X11-X12) are derived in a contrastive perspec-

tive. For instance, pre-and post- syllable contrast (X2 and X3) is defined as extracted Aa values in the current sylla-

ble position subtracting those in pre- or post- syllable as demonstrated by Eqs. (4) and (5).

AX2i ¼ AX1i � AX1i�1 ð4Þ

AX3i ¼ AX1i � AX1iþ1 ð5Þ
where i is the position index of current syllable. AX1i; AX1i�1; AX1iþ1 respectively represent the extracted Aa val-

ues in current, preceding and following syllable position.

TaggedPRelative positions to information centers including (1) the primary-stress syllable in a word and (2) a narrow-

focused word in a sentence are also considered as factors for Aa prediction (Tseng et al., 2014). Tseng et al. showed

that position relative to information centers is a predictor for systematic/optimal patterns of L1 prosody whereas L2

features are less sensitive to the same factors. The relative positions to information center are defined as demon-

strated in Eq. (6).

X7 ¼ i� iNF ð6Þ
where i and iNF are respectively the absolute position indexes of current word and narrow focused word.

TaggedPA simple illustration of relative positions to second type of information center, namely narrow-focused word in a

sentence, is demonstrated as follow.

TaggedPYOU SHOULD TAKE(BF) THE(NonF) ELEVATOR(NF) INSTEAD OF THE STAIRS.

TaggedPIn the example, the position of ‘THE’ relative to the information center is defined as the absolute position of

‘THE’ in the current sentence subtracting the absolute position of narrow focus, namely ‘ELEVATOR’, in the cur-

rent sentence. Because ‘THE’ and ‘ELEVATOR’ are respectively the 4th and 5th words in the current sentence, the

obtained position of ‘THE’ relative to the information center is ¡1, 4�5 =¡1.

TaggedPAnother important linguistic level, i.e., information structure (X13/X14), is derived from the labels of focus status

smoothed using a defined function, information density, as shown in Eq. (7). Information density determines

the information weight at the current position by averaging the weights of nearby individual small units such as
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TaggedPwords/syllables. The function is based on an assumption that larger-scale planning for neighborhood information

context is more physiologically efficient than smaller-scale planning for individual units, which may lead to frequent

changes of articulator.

X14i ¼ 1

2nþ 1

Xn
i¼�n

X5i ð7Þ

where i is the current word position index and n represents scale setup for surrounding context (n = 1 setup in the

following example, n = 2 fine tuned in results Section 5.1.4).

TaggedPA simple illustration of information density is provided as follows:

TaggedPYOU SHOULD TAKE(BF) THE(NonF) ELEVATOR(NF) INSTEAD OF THE STAIRS.

TaggedPIn the example, the information weight of ‘THE’ is jointly decided by ‘TAKE’, ‘THE’ and ‘ELEVATOR’ . If

non-focus, broad focus and narrow focus information weights are respectively setup as 1, 2, 3, the information

weight of ‘THE’ would be interpolated from 1 to 2, (2 + 1 + 3)/3.
TaggedP3.2.2. Linguistic variables for modeling Ap

TaggedPHigher-level discourse and information planning specifications for Ap modeling are listed in Table 3. Similar to

extracting Aa modules described in Section 3.2.1, Ap values are grouped and averaged by the variables in Table 3 to

derive Ap modules into each level of linguistic specifications. Again, module separation between levels before Ap

modeling is also required to make clear the interactive effect from lower to higher levels listed in Table 3. For Ap

modules at discourse level such as PG, PG positions should be normalized due to various PG lengths by PPh/Ap

number. The normalized PG positions are defined in Eq. (8).

NorPPG ¼ iAp=NPG ð8Þ
where NorPPG, iAp andNPG respectively represent normalized PG position, absolute position index of current Ap in

current PG and total number of Ap in current PG.

TaggedPThe normalized PG positions are further quantized into 6 bins for grouping Aps and deriving the Ap average.

TaggedPAfter the PG effect is subtracted from the surface Ap, the residual Aps are also grouped and averaged by normal-

ized information density to derive the additive Ap modules of information density. The normalized information den-

sity is defined by Eq. (9).

NorIDPPh ¼ NBFþNF=LPPh ð9Þ
where NorIDPPh; NBFþNF and LPPh respectively represent the normalized information density of a phrase, the num-

ber of BF plus NF in current phrase and the total word number in current phrase.

TaggedPThe normalized information density is quantized into 5 bins for grouping Aps and deriving the Ap average.
TaggedP3.2.3. Linguistic variables for modeling phoneme duration (PD)

TaggedPA total of four linguistic variables were used as input features for PD modeling: phoneme identity, type of lexical

stress, focus degree and syntactic structure. Phoneme identity was included as a linguistic variable for modeling PD,

in order to feature intrinsic durational difference among phoneme types.
Table 3

Summary of linguistic variables for Ap modeling.

Discourse structure Phrase length by word number

Break level preceding a phrase

Break level following a phrase

Normalized phrase position in a BG

Normalized phrase position in a PG

Distance to pre phrase by word number

Information allocation Number of BF and NF per phrase

Number of NF per phrase

NF position in a phrase

Information density in a phrase
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4. Methodology

4.1. Separation of acoustic/prosodic variables into levels of linguistic specification

TaggedPAa, Ap and PD were divided into explicit modules/patterns corresponding to linguistic levels, respective in order

to determine the contribution made by each level to surface prosody. An Aa example given in (10) shows the layered

contribution from each level of linguistic specifications listed in Table 2 to surface Aa.

ASF ¼ MX1 þMX2 þMX3 þ . . . þMX14 ð10Þ
whereASF represents surface Aa and MX1� MX14 respectively represent the prosodic modules of Aa by each level

of linguistic specifications listed in Table 2.

TaggedPDerivation of particular prosodic module from surface Aa, taking stress labels (primary, secondary and tertiary) as

example, is shown in (11) and (12). Note that (11) and (12) only use Aas extracted from the target words in carrier

sentences (Appendix A and B) which is designed to elicit canonical prosodic patterns of lexical stress with minimal

prosodic interaction from the other prosodic layers.

ASF ¼
A1

A2

. . .

A i

2
6664

3
7775; LX1 ¼

L1

L2
. . .

L i

2
6664

3
7775; Li 2 fSTj:

0
P0;0S0; 0T0g ð11Þ

where i, LX1 and j represent the observation index, corresponding target label (stress for example) and category index

of the stress label;‘P’,‘S’,‘T’ respectively represent primary, secondary and tertiary stress.

MX1 ¼
M1

M2

. . .

M i

2
6664

3
7775; Mi ¼ 1

Nj

X
A i:Li 2 STjf g ð12Þ

whereNj is the number of the observations belonging to stress type STj.

TaggedPExtracted Aa modules in the current level (which is stress,Mx1 in example 13 below) were separated from surface

prosody ASF to derive higher level effect, AH which represents the collective contribution from X2-X14.

AH ¼ ASF �Mx1 ¼ Mx2 þMx3 þ . . . þMx14 ð13Þ
TaggedPIf the focus status (X5) is chosen as the next target factor to separate, Aa modules at the other levels except for X5

(X2-X4, X6-X14) could be further teased apart by subtracting Aa modules at X5 from AH . The derivation of Aa

modules at X5 is the same as (11) and (12) while Li replaced from stress labels (X1) to focus labels (X5). Note that,

if focus status is targeted; only Aas extracted from tasks of contrastive stress (Appendix D) are used.

TaggedPApplying the procedure of module extraction and exclusion from X1 to X14 iteratively, each level of prosodic

modules could be separated from the surface prosody ASF and analyzed.

TaggedPNote that for each separation, only one individual target specification at a time is allowed in order to minimize

possible interaction effects between specifications. This dynamic programming rationale can achieve final global

optimization for each level of prosodic modules/patterns with minimal interaction from higher-level linguistic

specifications.
4.2. Regeneration model of L1 prosody using linguistic specifications

TaggedPAfter the Ap/Aa/PD modules had been separated into disjointed level, the whole Ap/Aa/PD set combining each

level of modules could be served as a multi-level code book representing the prosodic hierarchy. According to the

hierarchical code book of L1 prosody, textual annotations on scripts were transformed into corresponding prosodic

modules at different level. Using the prosodic modules at each level as inputs, joint contribution from each level,

which simulates mutual interaction among levels was optimized/trained by regression models. We assume the con-

figuration is capable of regenerating the aggregate and interactive contribution of prosodic modules into native
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TaggedPexpressive prosody, which can provide corrective prosodic norm for the learner. The three types of regression mod-

els used are: Multivariable Linear Regression (MLR), Robust Regression (RoFit) and Feedforward Neural Network

(FNN). These regression models simulate different types of mutual interaction among prosodic levels using linear

combination (MLR/RoFit) or multi-layer nonlinear transformation (FNN). Training the regression models for opti-

mizing joint contribution from each level is illustrated in Fig. 4. More details of the three types of regression model

will be shown in Section 4.2.2.

TaggedPAccording to observation for Aa deployment in real speech flow, Aas only appear in certain syllable positions, not

in all syllable positions. Aas positions by syllable must be determined before predicted Aa values inserted. Whether

current syllable position is inserted with Aa value is determined by decision tree (see Section 4.2.1) using predictors

in Table 2 as inputs.
TaggedP4.2.1. Binary classifier for predicting Aa position

TaggedPTo predict the absence/presence of Aa by syllable within a prosodic phrase, the linguistic variables in Table 2

were used as explanatory input to a decision tree: a predictive model with tree structures, which maps an item’s

explanatory inputs to a conclusion about that item’s response values (Pedhazur, 1982). The split criterion used in

this study is Gini’s diversity index (gdi), with ’leave-one-out’ added for model validation.
TaggedP4.2.2. Regression models for predicting Ap, Aa and duration

TaggedPThree types of regression models were used to predict three prosodic variables (Aa, Ap and PD) from the linguis-

tic specifications in Section 3.2, including: Multivariable Linear Regression (MLR), Robust Regression (RoFit) and

Feedforward Neural Network (FNN). MLR approximates the relationship between a response variable and a linear

combination of explanatory variables (Utgoff, 1989). RoFit is an extension of multivariable linear regression, whose

derived model is less sensitive to outliers (Andersen, 2008). FNN is a modeling technique for approximating a

response variable using non-linear functions (Auer et al., 2008). The model used in this study includes thirty hidden

layers.
Fig. 4. Generating hierarchical code book of L1 prosody and training optimal model to simulate surface prosody of L1.
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4.3. Resynthesis � generating corrective feedback for learners

TaggedPUsing the hierarchical code book of L1 prosody derived and the layering contribution optimized (Section 4.2.2),

annotations on learning script for L2 learners could be transformed and resembled into simulated L1’s patterns of F0

and tempo (Aa/Ap/PD). The simulated L1 patterns including continuous F0 contour recovered by transformed Aa

and Ap, using Eq. (2) and (3), as well as duration features in phoneme units were than superimposed onto identical

L2 sentences/paragraphs and resynthesized as corrective prosodic feedback for L2 learners. The resynthesis/transfor-

mation of L2 speech is implemented using the Time-Domain Pitch Synchronous Over Lap-and-Add (TD-PSOLA)

(Malah, 1979) provided by Praat (http://www.fon.hum.uva.nl/praat/). An illustration is shown in Fig. 5. We assume

that the resythesized L2 speech is comprised of basic naturalness due to the following two reasons. (1) In comparison

to conventional speech synthesis that concatenates small units such as words into phrases and/or sentences and faces

the issue of lack of naturalness head on, we choose to use L2 produced continuous speech of both short and longer

complex sentences. As a result of design, our L2 speech is already more natural than word based synthesis output in

the first place. Our attempt was to superimpose specific prosodic features to improve continuous speech to prosody

only. (2) The current study sets up particular thresholds for each prosodic parameter to limit the degree of manipula-

tion in order to rule out unnatural resynthesized speech due to extreme parameters. However, we believe parameter

adjustment in relation to naturalness for such CALL feedback applications is an interesting issue that merits further

study in the future.

TaggedP4.3.1. Evaluation

TaggedP4.3.1.2. Objective evaluation. TaggedPThe proposed model will be objectively evaluated by Root Mean Square Error

(RMSE) and Pearson’s correlation (Corr) between simulated and real/original L1 prosodic features. RMSE measures

the difference between predicted and extracted prosodic features (Ap/Aa for F0 and PD for duration), and Corr meas-

ures the degree of their linear relationship. Furthermore, the RMSE and Corr in the current model are compared

with a baseline model in a previous study (Mixdorff, 2002b). In the baseline model, several higher-level variables

including prominence and sentence effect were considered and used as inputs of feedforward neural network for
Fig. 5. Superimposing simulated L1 prosody onto L2’s speech as corrective feedback for L2 learners.

http://www.fon.hum.uva.nl/praat/
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TaggedPAp/Aa/duration prediction. Using the baseline model, high performance on Ap/Aa/duration prediction was achieved

and reported.

TaggedPThe present study assumes that the proposed current prosodic model could improve baseline model in terms of

prediction accuracy by three innovative features: (1) prosodic modules are separated into levels of linguistic specifi-

cation, which are posited to be explanatory variables, whereas the baseline model have directly derived modules in a

single flat level without separating mutual interaction between prosodic layers/linguistic specifications. (2) Informa-

tion density was added to the predictor variables for Aa and Ap modeling. (3) Discourse-level specifications

were added to the list of predictor variables for Ap. The relative improvement to baseline model will be reported in

Section 5.3.1.

TaggedP4.3.1.3. Subjective evaluation. TaggedPResynthesized L2 speech was subjectively evaluated by eight native English partici-

pants (4 M/4F) in a perception test to determine whether superimposition of L1 prosodic contours generated by the

current prosodic model would make L2 speech more ’native-like’ across a range of linguistic levels. Subjects were

asked to answer three respective questions in Table 4. corresponding to three levels of improvement. Q: “Which tar-

get word/sentence/paragraph is more native-like?” A: (1) speech sample A, (2) speech sample B and (3) no differ-

ence. The examples A and B are randomly assigned into original and resynthesized L2 speech samples of the same

text content. The goal is to subjectively evaluate whether resynthesized L2 speech using the present model is per-

ceived as less accented than original L2 speech. The experiment included a total of fifteen perception subtasks,

including twelve subtasks related to stress and focus, and three subtasks related to discourse.
5. Results

5.1. L1-L2 differences of F0 at some major linguistic specifications
TaggedP5.1.1. Lexical stress

TaggedPThe L1/L2 F0 difference due to (lexical) stress status primary, secondary and tertiary is measured by degree of

contrast whereby contrast is defined as subtraction of Aa values between the maximum and minimum, shown in

Fig. 6 (Su et al., 2016a). Materials used to elicit these comparisons were designed to minimize the effects of other

linguistic specifications, such as boundary effect, by embedding the target words in carrier sentences. Overall, Tai-

wan L2 English exhibits a lower degree of contrast among primary, secondary and tertiary stresses than L1 English,

as shown in Fig. 6.

TaggedPThe L1 Aa patterns derived was recorded in the code book of L1 F0 at lexicon level to serve as lexicon-level

inputs for prediction of L1 F0 (Section 4.2). The following prosodic modules/patterns derived will also be recorded

to build up the hierarchical code book of L1 prosody from lower to higher level.
Table 4

Question set for perception test by linguistic level.

Lexical level Which target word is more native-like?

Sentence level Which sentence is more native-like?

Discourse level Which paragraph is more native-like?
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Fig. 6. Lexical-level Aa by stress type and speaker group; P, S and T = primary, secondary and tertiary stress.
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TaggedP5.1.2. Focus status

TaggedPFig. 7 shows Aa comparison by speaker group (L1/L2) and focus status after the effect of lexical stress (Fig. 6)

was removed. Again, results indicate that Taiwan L2 English speakers produce weaker contrasts at the focus level

than L1 speakers. Analysis of L1 patterns showed that relative larger additive Aa in narrow focus potion than broad

focus and non-focus. The Taiwan L2 English speakers, in contrast, showed less differentiation of primary and ter-

tiary stresses, and secondary stress departed even further from the L1 norms.
TaggedP5.1.3. Discourse prosody

TaggedPFig. 8 shows patterns of Ap across PG positions in L1 and L2 speech (Su et al., 2016b). The L1 pattern shows

global F0 declination across PG positions clearly, whereas the irregular L2 pattern exhibits no clear direction. L2

results suggest lack of discourse planning across PG positions.
TaggedP5.1.4. Information allocation

TaggedPFig. 9 illustrates the relationship between Ap and information density within a PPh for both speaker groups. The

L1 pattern shows an overall ascending tendency, indicating that information density increases across PPhs. The L2

pattern, in contrast, exhibits very weak correlation between Ap and information density.
TaggedP5.1.5. Summary of F0 findings

TaggedPThe F0 study showed that by each specification L2 exhibited weaker contrast than L1. At the lower level, L2

speakers’ produced lesser local F0 humps than L1; the lack of pronounced contrasts, therefore, can be regarded as an

account of L2 accent. At the higher levels with respect to global F0 tendency in relation to discourse position and

information density, we found a positive correlation between global F0 tendency and predictive variables, which
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Fig. 8. Ap across PG positions in L1 and L2 speech. Vertical axis = Ap; horizontal axis = normalized and quantized PG position.
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Fig. 7. Aa comparison by L1/L2 and focus status after the effect of lexical stress was removed; NF, BF and Non-F = narrow, broad and non- focus.
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Fig. 9. Distribution of Ap by information density in L1 and L2 speech. Vertical axis = Ap; horizontal axis = normalized and quantized information

density.
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TaggedPwas absent in L2 speech. For PG position, L1 speakers produced global paragraph F0 declination, a prosodic feature

which forms semantic association and cohesion, from the beginning of a PG to its end, whereas the inverse F0 pat-

tern was found in L2 data. Hence, the F0 results from both lower and higher levels allowed us to compare the

L1�L2 difference in a hierarchical/additive/finer-grained perspective which better accounts for accented L2 prosody

as opposed to previous L2 studies that investigated individual levels without considering their interaction.

5.2. L1�L2 differences of tempo from linguistic specifications and boundary effects

TaggedP5.2.1. Intrinsic segmental duration

TaggedPThe greatest L1/L2 difference in vowel duration was found in ʌ, ʊ, o, ɑ, and ə, for which between-group differen-

ces, ranging from 0.352 to 0.571 in normalized duration scale (Su et al., 2016c). As for consonants, the greatest

L1�L2 difference was found in u, ʒ, dʒ, h, and E, ranging from 0.419 to 0.789 in normalized duration scale.

TaggedP5.2.2. Lexical stress

TaggedPFig. 10 shows duration patterns by speaker group (L1/L2) and stress type after segmental effects was removed (Su

et al., 2016c). L2 speakers produced a lower degree of contrast among primary, secondary and tertiary stresses than

L1 speakers.

TaggedP5.2.3. Boundary cues

TaggedPFig. 11 shows duration patterns by boundary type and speaker group (L1/L2) after lower-level effects from seg-

mental duration and lexical stress was removed. With the exception of NB, all L1 patterns show considerable pre-

boundary lengthening; the degree of lengthening was almost identical among CR, FR and FF (0.173, 0.172 and

0.171). In Taiwan L2 English, however, a considerably smaller contrast degree of lengthening was found across all

boundary types, particularly in type CR (L1: 0.173, L2: ¡0.024).

TaggedP5.2.4. Focus marking

TaggedPFig. 12 compares L1 and L2 production of the duration patterns of marking focus status after removal of segmen-

tal, lexical and boundary effects (Su et al., 2016c). Focus categories include narrow focus (NF), broad focus (BF),

non-focus (NonF) and function word (FW, subcategorized from NonF). The focus status of syllables was further

divided into primary, secondary and tertiary stress types, as the adjustments in segment duration used to mark stress

may vary according to stress types (see Fig. 10). In the L1 primary and secondary stress patterns demonstrated

(Fig. 12), lengthening increased with focus status in the order of NonF<BF<NF, whereas tertiary stress was
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Fig. 10. Duration patterns by stress type and speaker group (L1/L2) after subtraction of segmental effects.
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Fig. 11. Duration patterns by boundary type and speaker group (L1/L2) after subtraction of segmental and stress effects. Non-phrase final bound-

ary, continuation rise, final rise and final fall are labeled NB, CR, FR, and FF, respectively.
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Fig. 12. L1 (Left) and L2 (Right) duration patterns by focus degree after subtraction of segmental, stress and boundary effects. Function word,

non-focus, broad focus and narrow focus are labeled FW, NonF, BF, and NF respectively.
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TaggedPshortened. As a result, at the NF position, additive duration incremental on canonical primary/secondary stress sur-

passed tertiary stress. In other words, interaction with NF position resulted in L1’s further lengthened primary/sec-

ondary stress and shortened tertiary stress, as shown in the left panel of Fig. 10, and resulted in increased contrast

degree among stress types. However, patterns from L2 data exhibited equal duration incremental among primary,

secondary and tertiary at the NF position, as shown in the right panel of Fig. 12. The results demonstrate that lower

discrimination among stress types in L2 patterns; results shown in Fig. 10 retains.
TaggedP5.2.5. Summary of temporal differences

TaggedPThe duration study showed how Taiwan L2’s tempo contrast is less distinct than L1 speech in relation to each

specification and from lower to higher levels, and accounted for L2 accent due to temporal patterns. Patterns of tem-

poral adjustment at the segmental level suggest that L2 speakers’ greatest challenge lies in the production of central

vowels, back vowels and fricatives. At the level of lexical stress, the same L2 speakers exhibited a lower degree of

contrast between stressed and unstressed syllables in all conditions, an echo to our f0 findings and another account

of L2 accent. The temporal contrasts used to mark different levels of prosodic boundaries were also less strongly dif-

ferentiated in L2 speech, as found in pre-boundary lengthening/shortening contrasts across non-phrase boundaries,

continuation rises, final rises and final falls. As for the temporal adjustments used to mark focus status, while L1

speakers synchronized their temporal adjustments for focus status with lexical-stress specifications. As a result of

interaction, temporal contrasts of lexical stress increased with increasing levels of focus. However, this interaction

caused adjustment was not found in L2 speech. Taken together, these results suggest that encoding higher-level pro-

sodic information, such as boundary and focus marking, presents the great challenge to L2 speakers. The duration

results at both lower and higher levels also allowed us to compare the L1-L2 difference in a hierarchical/additive/

finer-grained perspective which better accounts for L2 prosodic accent, and distinguished our present to most previ-

ous L2 studies which investigated individual level without considering layered interactions.
5.3. L1 prosody prediction using linguistic specifications
TaggedP5.3.1. Objective evaluation of F0 prediction

TaggedPPredicted F0 and tempo using our L1 prosody model (see Section 4) were objectively evaluated with features

derived from baseline model according to RMSE and Corr. Contribution weights among each linguistic/prosodic

level in our linear model were further examined to account for prosodic spectrum of native/expressive L1 prosody

TaggedP5.3.1.2. Modeling position of accent command. TaggedPUsing a decision tree to predict position of accent command,

this model achieved an overall prediction accuracy rate of 93.66% (Su et al., 2016a). The strongest predictors by lin-

guistic specifications are ‘contrast with previous focus’, ‘focus degree’, ‘focus structure’, ‘information density by

syllable’, and ‘information density by word’.

TaggedP5.3.1.3. Modeling Aa. TaggedPRMSE and Corr between generated and original Aa values by different methods are pre-

sented in Fig. 13. Overall, the current model performed better than the baseline, with an average improvement over

three regression analyses (MLR, RoFit and FNN) of 0.16 (baseline) to 0.13 (proposed model) in RMSE, and 0.45 to
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Fig. 13. RMSE (Left) and Corr (Right) between predicted Aa and original Aa extracted using multivariable linear regression (MLR), Robust

regression (RoFit) feedforward neural network (FNN).
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TaggedP0.64 in Corr. The most substantial Corr and RMSE improvements of our model are found in performance over the

baseline, as demonstrated in MLR analysis (RMSE: 0.16 to 0.13; Corr: 0.52 to 0.72).

TaggedPResults of weight contribution analyses using MLR and RoFit are given in Table 5 (Su et al., 2016a). The top

three contributing linguistic specifications across both regression analyses were ‘focus degree of current word’,

‘Type of lexical stress in current syllable’ and ‘relative syllable position by primary stress’.

TaggedP5.3.1.4. Modeling Ap. TaggedPRMSE and Corr between generated and original Ap values by different methods are pre-

sented in Fig. 14. Three RMSE analyses determined that average improvement showed how our model performed

over the baseline, that is, 0.19 (baseline) to 0.18 (current), with the most significant RMSE improvement found in

FNN (0.21 to 0.17). Average improvement measured by three Corr analyses was 0.34 (baseline) to 0.48 (proposed),

with the most significant improvement found in FNN (0.37 to 0.62)

TaggedPTable 6 presents results of MLR and Rofit weight contribution analyses (Su et al., 2016b), both of which showed

that the three strongest linguistic predictors are ‘Distance to pre Ap’, ‘Normalized position by BG’ and ‘Normalized

position by PG’. Information density’, which correlates most positively to information content, was ranked the fifth.

TaggedP5.3.1.5. Summary of objective evaluation of F0 prediction for L1. TaggedPThe F0 results demonstrate that the proposed

method can improve the baseline model across different levels of features and different types of regression models.

The Aa position and magnitude at the lower level predicted using the proposed method suggests that, for L1 speak-

ers, the location of local F0 humps is systematic and predictable using a combination of linguistic information

related to lexical stress, focus structure and discourse structure. The three strongest predictors are focus struc-

ture> lexical stress> information density. Comparing different regression models for Aa prediction (magnitude of

short-term/local F0 humps) in the proposed method, an interesting finding is that simpler linear combinations
Table 5

Relative contribution weights or Aa prediction.

Regression\Contextual linguistic specification MLR RoFit

X1 - Lexical stress type of current syllable 2.36 2.20

X2 - Pre-syllable contrast within a word ¡1.89 ¡1.74

X3 - Post-syllable contrast within a word 0.09 0.15

X4 - Relative syllable position by primary stress in a word 2.41 2.30

X5 - Focus degree of current word 2.88 2.71

X6 - Pre-word contrast within a sentence 0.09 0.02

X7 - Post-word contrast within a sentence 0.58 0.63

X8 - Relative position to NF in a sentence 0.99 0.36

X9 - Relative position to first BF in a sentence ¡1.03 ¡0.74

X10 - Boundary type (level) of current phrase ¡1.56 ¡1.97

X11 - Boundary type (level) of pre phrase 1.38 1.74

X12 - Boundary type (level) of post phrase ¡0.89 ¡0.92

X13 - Infodensity by syllable ¡1.03 ¡0.48

X14 - Infodensity by word 1.61 1.52
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Fig. 14. RMSE (Left) and Corr (Right) between predicted Ap and original Ap extracted by MLR, RoFit and FNN.
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TaggedPoutperformed more complex model of multi-layer nonlinear transformation, especially in terms of correlation. This

suggests the production/planning of short-term/local F0 humps is a straightforward scheme which only requires sim-

ple linear combination. As for Ap (global F0 magnitude) prediction at higher level using the proposed method, con-

tributing weight analyses demonstrate that between-Ap/PPh association, normalized BG and PG positions are the

three strongest predictors, which suggests that the patterns in global F0 magnitude produced by L1 speakers are

strongly influenced by discourse (and thus hierarchical) structure. The comparison across regression models for Ap

prediction using the proposed method demonstrated the non-linear model outperformed the linear model, suggesting

the L1 F0 production of long term/global discourse units at higher level is a relatively more cognition-intensive pro-

cess than linear combination. As a result, the prediction for local and global F0 features of L1 allowed us to examine

improvements our proposed features and comparison with the baseline models captured, as well as facilitated better

understanding of F0 production/planning of native/expressive L1 prosody using machine simulations.
TaggedP5.3.2. Objective evaluation of tempo prediction

TaggedPFig. 15 shows a comparison of RMSE and Corr analyses of phoneme duration (PD) predicted by the baseline and

the current model. Overall, the current model performed slightly better than the baseline. An average of three RMSE

analyses showed an improvement of 0.55 (baseline) to 0.53 (proposed), as well as the MLR analysis, which showed

and improvement of 0.51 to 0.49. Average improvement shown in three Corr analyses was 0.72 (baseline) to 0.73

(proposed); FNN analysis results showed an improvement from 0.78 to 0.79. Subsequent analyses of contribution

weights using MLR and RoFit appear in Table 7 (Su et al., 2016c).

TaggedP5.3.2.2. Summary of L1 tempo prediction results. TaggedPOverall, the results suggest that for L1 speakers, PD is systemati-

cally determined through a combination of linguistic specifications related to phoneme identity, stress type, syntactic

structure and focus degree while the present method slightly improved prediction accuracy than the baseline model.

However, we believe the predictions for temporal features allowed us to better understand tempo production/plan-

ning of native/expressive L1 speech using machine simulation.
Table 6

Relative contributing weights for Ap prediction.

Higher level specifications\Regression MLR RoFit

Discourse structure Phrase length by word number 1.37 0.66

Break level preceding a phrase 0.53 0.53

Break level following a phrase 0.10 0.09

Normalized phrase position in a PG 2.43 3.63

Normalized phrase position in a BG 6.17 7.11

Distance to pre phrase by word number 11.37 10.88

Information allocation Number of BF and NF per phrase ¡1.90 ¡1.20

Number of NF per phrase 0.00 0.05

NF position in a phrase 0.88 0.45

Information density in a phrase 1.44 0.98



Table 7

Relative contributing weights for tempo prediction.

Linguistic specification\Regression MLR RoFit

phoneme identity of current phoneme 0.97 0.99

lexical stress of current syllable 1.04 0.85

focus degree of current word 1.08 0.93

syntactic structure of current phrase 0.97 0.54

0.60
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MLR RoFit FNN Average

Baseline Proposed
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rr

Regression type

0.20
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0.40

0.50

0.60

MLR RoFit FNN Average

Baseline Proposed
RM
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Fig. 15. RMSE (Left) and Corr (Right) between predicted PD and original PD extracted using MLR, RoFit, and FNN.
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TaggedP5.3.3. Subjective evaluation of F0 and tempo predictions

TaggedPThe current L1 prosodic model was used to resynthesize L2 speech, which was subsequently compared with orig-

inal L2 speech tokens in order to determine which speech samples (original or resynthesized) sounded more ‘native-

like’ . Results of a perception test using native listeners are presented in Fig. 16. The dotted, meshed and twilled par-

titions in each bar respectively represent the percentage of resynthesized L2 speech perceived as (1) improved (2)

worsened (3) no difference from the original L2 speech by perceived accent. The largest partitions at each prosodic

level, marked by * in Fig. 16 demonstrate that resynthesized versions (red) are perceived as most ‘native-like’ at

each level. The results therefore suggest L2 speech with our modifications did reduce the degree of accent in com-

parison to the original L2 speech by each specified prosodic level.

TaggedPAt the lexical level, L2 speech that had been resynthesized using our F0 and duration model received the highest

rating (82.14% of listeners chose these tokens). At the sentence level, L2 speech resynthesized with F0 and F0 + Dur

models received ratings of 75% and 58.3%, respectively, both of which surpassed the Dur only modele. At the dis-

course level, speech resynthesized with the Dur model received rating of 62.5% which was also higher than the orig-

inal L2 speech.
Fig. 16. Perception results.
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TaggedP5.3.4. Summary of L1 prosody prediction and evaluation

TaggedPThe results suggest that resynthesizing L2 speech using the prosodic parameters generated by the current model

substantially reduced the level of perceived L2 accent at each level of specific prosodic features. However, at the dis-

course level, improvement of perceived L2 accent using the F0 and Dur + F0 models is greater than the Dur only

model. Our speculation is such that this may be due to the complex F0 generation processes from automatic extrac-

tion of Ap/Aa to curve generation as well as from lower (syllable level) to higher level (discourse/information struc-

ture). The procedures may also involve configuration of particular parameters not yet addressed in the present study

such as onset time of phrase component, T0i in Eq. (1), which is set to a fixed value for the time being in the present

study. In other words, perhaps some inappropriate parameters configured from lower level or even from the extrac-

tion procedure may cumulate to the higher level whereby accumulated errors may be the cause. Nevertheless, this

phenomenon requires further studies and more refined parameter adjustments at each level for confirmation.

6. General discussion

TaggedPThe present study is the first attempt to incorporate both hierarchical discourse and focus-type defined information

structure to (1) investigate the interactive contributions of prosodic differences between L1 and L2 as well as to

(2) simulate native/expressive L1 prosody for generating corrective feedback to improve L2 expressive prosody.

Using lower- to higher-level specifications related to linguistic, discourse and information structures, with special

attention to help enhance semantic association/cohesion and weighted information placements, the present study fea-

tures L1/L2 comparison of contrast differentiation across a wider range of features than most reported CALL sys-

tems set goals on, and targets to bring learners’ attention to the prosodic composition and characteristics that

contribute derivationally to fluency and expressiveness. The proposed range of linguistic specifications spans from

lower to higher levels; their interactive contribution to output prosody clearly manifested. That is, at the lower (word

and sentence) levels, L2’s weaker contrast differentiation, substantiated by contrastive patterns of F0 and tempo, is

identified to relate to word stress patterns and focus status. At the higher (multi-phrase discourse and information)

levels, L2’s weaker contrast differentiation is also identified to cross-phrase cohesion and higher level foci. As a

result, when lower level contrasts are further nested into higher and larger units, their interaction causes lower level

contrasts to further weaken and the higher level contrasts less obvious. Our results also suggest that when producing

continuous speech, Taiwanese L2 English speakers tend to plan by smaller speech units (words and single sentences,

Tseng et al., 2010), did pay attention to lower level features (word stress and sentence intonation), but are less able

to achieve the required degree of contrast differentiation. At the same time, they (Taiwanese L2 speakers) are less

sensitive to other multiple levels of prosodic planning involved to produce continuous speech, most notably cross-

phrase cohesion from a hierarchical perspective and marking information structure. The interactive results have

been accounted for.

TaggedPUsing the extracted patterns/modules of L1 prosody at each linguistic/prosodic level from low to high, the present

study proposes a prosodic model which aims to simulate native/expressive L1 speech for generating corrective pro-

sodic feedback for L2 learners. When compared to a baseline model the proposed model achieved a higher level of

accuracy in prediction and regeneration of L1’s F0 and duration, in which (1) input variables are directly extracted

from a flat level of surface prosody without separating mutual interaction between layers before modeling, and

(2) discourse and information structures are not added to the list of predictor variables. The relative improvement

using our proposed features and method provided better simulation results which in turn also accounted for produc-

tion/planning of native/expressive L1 prosody.

TaggedPUsing our methods of simulating the production of L1 prosody, contribution weights for each linguistic/prosodic

level with a linear model are compared across Aa, Ap and PD to account for the prosodic spectrum of native/expres-

sive L1 speech. The comparison shows that the novel features “information density” and “discourse specifications”

do contribute to surface out prosody; their respective contributions different. Regarding short-term/local F0 humps

(Aa), information-related specifications such as local and nearby information contents play a more important role

than discourse-related specifications such as boundary types. We believe this is a special feature of continuous

speech planning that merits more research attention. Regarding long term/global tendency of F0 (Ap), discourse

structures such as between-Ap association, BG and PG positions appear to dominate the contributions of Ap predic-

tion. As for duration features (PD), discourse and information structures contribute evenly to the final output (surface

form). The results account for L1’s complex strategy involved in planning multiple prosodic levels by different sizes
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TaggedPwith aims to express semantic association/cohesion and highlight key information through prosody specific to fluent

continuous speech. Needless to say, the task is difficult for L2 learners and explicit a corrective feedback model

should be helpful.

TaggedPComparison of the linear model and multi-layer non-linear transformation for F0 modeling of L1 yielded different

performance results between two levels for F0 features, namely, local F0 humps (Aa) and global F0 tendency (Ap),

thus nailing down different degree of planning complexity for respective corresponding levels. Prediction of local

F0 humps (Aa) showed the simpler linear model outperforms non-linear transformation whereas prediction of global

F0 tendency (Ap) exhibited opposite results in which complex non-linear model performed better. The simulation

results imply that production of long term/global F0 for discourse units involves more complex planning processes

than short-term/local units, thus further accounts for L2 speakers’ difficulty when trying to plan long-term/global

features, as similarly evidenced in previous works of how F0 features related to both discourse and information

structure (Atterer and Ladd, 2004; O’Brien and Gut, 2010; Nguyễn et al., 2008; Saha and Mandal, 2017; Tseng

et al., 2010).

TaggedPIt is therefore our belief that when used to improve the quality of user feedback in CALL applications, our find-

ings could help draw L2 speakers’ attention to the range of higher-level prosodic features involved in production of

fluent, expressive speech and used to increase the efficiency of L2 prosody training paradigms. Resynthesized L2

speech using our model was also tested for subjective perceptual support. The results demonstrated that the current

model substantially reduced the level of perceived accent in L2 speech. If incorporated into a CALL system, the pro-

posed model is able to generate prosodic feedback for L2 learners by predicting L1 prosodic contours from annotated

text with at least three advantages: (1) most linguistic specifications and prosodic features used for modeling have

been developed in studies across languages and suggest these specifications are high-level/additive features upon

lower-level intrinsic properties such as segments/speech contents, etc. In other words, even when lower-level speech

contents are not available in the L1 database, the L1 prosodic patterns can still be predicted to simulate fluent and

expressive prosody as corrective norm as long as higher-level linguistic information above segments is provided or

labeled on the text. (2) Since corrective prosody was superimposed on speech segments produced by L2 lean-

ers themselves, hearing the modified prosodic outcome of their own voices should bring more pronounced

awareness of the L1/L2 differences. (3) By breaking down the relative contributions from different levels of

specifications, the proposed model is capable of providing customized adaptive feedbacks to identify particular

difficulties of each leaner by different levels, for example using F0 + Dur model to train better production of

lexical stress.

TaggedPMoreover, existing TTS systems such as HTS (HMM-based speech synthesis system, Tokuda et al., 2002) reports

that output naturalness is achieved, but at the cost of expressiveness due to over-smoothing. We believe systems as

such could benefit from incorporating our model to produce more pronounced discourse-association and more eli-

cited information foci. Therefore, another possible extension of application is to integrate our model into existing

TTS/CALL applications to further enhance the comprehensibility and expressiveness of output prosody due to dis-

course cohesion and information structure.

7. Conclusion

TaggedPThe proposed model allows for the more accurate characterization of the differences between the prosody of L1

and Taiwan L2 English speech with a hierarchical account of global discourse factors as well as information struc-

ture, thereby incorporating interaction of multiple levels of interaction involved in overall continuous speech pros-

ody. Experimental results revealed how Taiwan L2 speakers are less sensitive to different sized speech units and

hence supported our motivation that discourse cohesion, information structure and their interaction were indeed the

major contributors to Taiwan L2 English accent. Specific difficulties Taiwan L2 English speakers experience in pro-

ducing fluent and expressive prosody was further accounted for by analysis and simulation of L1 prosody, where

complex parallel planning strategies to achieve semantic association/cohesion and emphasize key information con-

tents at the same time are involved. Our L1 prosodic model was used to resynthesize corrected L2 speech to simulate

improved prosody for L2 learners with feedbacks that help increase both intelligibility and comprehensibility in

terms of fluency and expressiveness. We hope that the proposed linguistic information-based prosody model could

further enhance fluency, comprehensibility and expressiveness of L2 continuous speech and at the same time provide

more linguistic implications for advanced computer-assisted language learning. Future research will focus on
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TaggedPtraining the proposed model with more realistic speech data to improve its prediction accuracy, with particular atten-

tion to more refined parameters and adjustments at the discourse level, and its integration with existing TTS/

CALL systems.
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Appendix A. Target words by syllabicity, stress type and experimental condition.

TaggedP
Stress type
 Target words
 Stress type
 Target words
2�1
 Money;morning
 4�1
 Elevator; January
3�1
 Video; hospital
 4�2
 Available; experience
3�2
 Apartment; tomorrow
 4�3
 Information; California
3�3
 Overnight; Japanese
 4�4
 Misunderstand; Vietnamese
Left-Headed compound
 supermarket; department
 Right-Headed compound
 White wine; afternoon
resents two-syllable words with primary stress in 1st syllable position
Where 2�1 rep

Appendix B. Carrier sentences.

TaggedPExamples

TaggedP1 I said EXPERIENCE(TARGET WORD) ten times.
TaggedP2
 I said VIDEO(TARGET WORD) five times.
TaggedP3
 I said ELEVATOR (TARGET WORD) five times.

Appendix C. At prosodic boundaries.

TaggedPAn Example

TaggedPAlthough Fred didn’t have any EXPERIENCEjCR, he had no trouble learning how to make a VIDEOjFF.
TaggedPWhere CR: continuation rise, FF: final fall, the other words without label: Non-phrase boundary.

Appendix D. In the position of contrastive stress.

TaggedPExamples

TaggedP1 Context: Have you been trained to do this job?
TaggedPAnswer: No. But I think EXPERIENCE(NF) is more important(BF) than training(BF).

TaggedP1 Context: Are we allowed to make audio and video recordings?
TaggedPAnswer: No. VIDEO(NF) recordings(BF) are not(BF) allowed(BF).

TaggedP1 Context: How will I carry all these boxes up to the fifth floor?
TaggedPAnswer: You should take(BF) the ELEVATOR(NF) instead of the stairs.

Where NF: narrow focus, BF: broad focus, the other words without label: Non-focus.
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